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Eddy Currents

When magnetic field is on, currents (eddy currents) are induced in 

conductors so that the pendulum slows down or stops





Displacement Current
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The Reality of Displacement Current
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Field in the region outside of the capacitor exists

as if the wire were continuous within the capacitor 
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Maxwell equations in all their consistency and beauty

differential form integral form
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Gauss’s Law for E

Gauss’s Law for B

Ampere’s Law

Faraday’s Law

How are these equivalent?



Special cases of the more general Stokes' theorem

The Divergence theorem relates the flow (flux) of a vector field through a surface to 

the behavior of the vector field inside the surface.

More precisely: the outward flux of a vector field through a closed surface is equal to 

the volume integral of the divergence of the region inside the surface. 

the sum of all sources minus the sum of all sinks gives the net flow out of a 

region.
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The left side is a volume integral over the volume V, the right side is the surface integral 

over the boundary of the volume V.

The Curl Theorem relates the surface integral of the curl of a vector field over a surface 

S to the line integral of the vector field over its boundary,

Use Divergence and Curl Theorems

The left side is a surface integral and the right side is a line integral
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Equivalence of integral and differential forms of Gauss’s law for electric fields

If is the charge density (C/m3), the total charge in a volume is the integral over that 

volume of 

But from the divergence theorem:

It is often written as



 D=  where D=ε0E
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So the next (?) time you see a shirt that looks like this:

You will know what it means!
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Maxwell equations and electromagnetic waves

differential form integral form
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Electromagnetic disturbances in free space

With a complete set of Maxwell equations, a 

remarkable new phenomenon occurs:

Fields can leave the sources and travel alone 

through space.

The bundle of electric and magnetic fields 

maintains itself: 

If B were to disappear, this would produce E; if 

E tries to go away, this would create B.

So they propagate onward in space.
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Generating Electromagnetic Radiation

Heinrich Hertz  was the first person to produce

electromagnetic waves intentionally in the lab

Oscillating charges in the LC circuit were sources of electromagnetic waves 

Marconi – first radio communication.

Radio transmitter- electric charges oscillate along the antennae

and produce EM waves. Radio receiver – incoming EM waves induce

charge oscillations and those are detected  



Plane EM waves

A simple plane EM wave 

Wavefront – boundary plane between the 

regions with and without EM disturbance

We will first show that such a plane

EM wave satisfies Maxwell equations

First, we will see if it satisfies Gauss’s laws for E and B fields



Consider Faraday’s Law
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Now consider Ampere’s Law
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Key Properties of EM Waves

The EM wave in vacuum is transverse; both E and B are perpendicular 

to the direction of propagation of the wave, and to each other. 

Direction of propagation and fields are related by 

There is definite ratio between E and B; E=cB

The wave travels in vacuum with definite and unchanging speed c

Unlike mechanical waves, which need oscillating particles of a medium 

to transmit a disturbance, EM waves require no medium. 
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Plane waves
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Plane waves
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General  (one-dimensional)  wave equation
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